

W boson mass and width measurements at the Tevatron

Sarah Malik
University College London

Motivation

Derive W mass from precisely measured electroweak quantities

 Δr : O(3%) radiative corrections dominated by tb and Higgs loops

 M_H can be constrained by precisely measuring M_W and M_{top} :

$$M_{H} = 85^{+39}_{-28} \text{ GeV (EWWG)}$$
 $(M_{H} < 166 (95\% \text{ CL}))$

 Γ_{W} is known very precisely in Standard Model (2MeV)

New physics could be seen as disagreement between precision measurement and theory.

Measurement Strategy

- use leptonic decay modes ; $p\overline{p} \to W \to \ell \nu$
- transverse quantities used
- Use M_T to extract both mass and width;

$$M_{T} = \sqrt{2p_{T}^{\ell}p_{T}^{\nu}(1-\cos(\Delta\Phi^{\ell\nu}))}$$

 Γ_{W}

 $M_{\mathbf{W}}$

• Fit in region 65 - 90 GeV

Measurement Steps

o Combine information into M_T ,

- o Add backgrounds to MC templates.
- o Fit for Mass/Width

 Γ_{W}

Particles in CDF detector

M_W

Momentum Scale and Resolution

Momentum scale set using:

$$→ J/Ψ → μμ data (MJ/Ψ ~ 3GeV)$$

>
$$\Upsilon \rightarrow \mu\mu$$
 data (M $_{\Upsilon} \sim$ 10GeV) Y(1S)

Cross -checked using:

events / 0.5 GeV

→ Z → μμ data (M_Z ~ 91GeV)

__Z mass in good agreement with world average value (91188±2 MeV)

Momentum resolution obtained from width of distributions.

Energy scale and resolution

Fit to the E/p distribution in W→ev data

Fit to the invariant mass of the Z in Z→ee data

-provides powerful cross-check

The Recoil Model

Recoil defined as vector sum over energy in all calorimeter towers excluding those containing/neighbouring the lepton(s).

$$\underline{U} = (u_x, u_y) = \sum_{\text{towers}} E \sin \theta (\cos \phi, \sin \phi)$$

There are 3 main contributions to the recoil;

QCD

Gluon jet recoiling off the boson

Underlying energy

Multiple interactions, spectator quark interactions and remnants of the ppbar collision.

Bremsstrahlung

Photons emitted by lepton that do not end up in the excluded region

The Recoil Model

- Pythia/Herwig not accurate enough.
- ad-hoc parametric model.
- Model recoil using $Z \rightarrow ll$ and minimum-bias data.

Recoil Model: W comparison

Recoil model for Zs is then applied to Ws. In W events, recoil is resolved into 2 directions;

- U_{II}: parallel to p_T(lepton)
- U_{\perp} : perpendicular to p_{T} (lepton)

$$M_T \approx 2p_T - U_{\parallel}$$

Bias in U_{\parallel} directly biases M_{T}

Backgrounds

- Backgrounds added to MC templates
- Electroweak backgrounds taken from full MC
- QCD backgrounds taken from data.

Electron channel

 multijet, where one of the jets fakes an electron and the other is mismeasured.

CDF II Preliminary (350 pb⁻¹) Mulijet [1.35%] W $\rightarrow \tau v$ [2.04%] Z \rightarrow ee [0.17%] Z $\rightarrow \tau \tau$ [0.12%] 10 M_T (GeV)

Muon channel

 decay in flight(DIF), kaon/pion decaying to μν pair.

W Mass fits

$$M_W = 80417 \pm 48$$
 (stat + syst) MeV
e + μ combination $P(\chi^2) = 7\%$

Include fits to p_T^{ℓ} and p_T^{ν} :

$$M_W = 80413 \pm 48 \text{ (stat + syst) MeV}$$

W Width fits

$$\Gamma_{\rm W}$$
 = 2032 ± 71(stat + syst) MeV

Combination p-value = 20%

Systematics Table

L = 200

M_W systematics

Γ_{W} systematics

CDF II preliminary	
--------------------	--

m _⊤ Uncertainty [MeV]	Electrons	Muons	Comm
Lepton Scale	30	17	17
Lepton Resolution	9	3	0
Recoil Scale	9	9	9
Recoil Resolution	7	7	7
u _∥ Efficiency	3	1	0
Lepton Removal	8	5	5
Backgrounds	8	9	0
p _⊤ (W)	3	3	3
PDF	11	11	11
QED	11	12	11
Total Systematic	39	27	26
Statistical	48	54	0
Total	62	60	26

CDF Run II Preliminary (350 pb-1)

		ΔΓ _W [MeV]	
	Electrons	Muons	Common
Lepton Scale	21	17	12
Lepton Resolution	31	26	0
Simulation	13	0	0
Recoil	54	49	0
Lepton ID	10	7	0
Backgrounds	32	33	0
p _T (W)	7	7	7
PDF	16	17	16
QED	8	1	1
W mass	9	9	9
Total systematic	78	70	23
Statistical	60	67	0
Total	98	97	23

Results

World's most precise single measurements!

Central value increases by 6 MeV: 80392 → 80398 MeV

Reduces uncertainty on world average by 15%:

29 → 25 MeV

Central value decreases by 44 MeV: 2139 → 2095 MeV

Reduces uncertainty on world average by 22%

60 → 47MeV

Electroweak fits

Summer 2006

$$m_H = 85^{+39}_{-28} \text{ GeV}$$

 $m_H < 166 \text{ GeV } @ 95\% \text{ C.L.}$

Including New CDF M_w:

$$m_H = 80^{+36}_{-26} \text{ GeV}$$

 $m_H < 153 \text{ GeV @ 95\% C.L.}$

Including New M_{top}:

Later this session....

Summary

- M_W: 80413 ± 48 MeV (stat + syst)
- Γ_{W} : 2032 ± 71 MeV (stat + syst)

Both are the world's most precise single measurements!

 New M_W further constrained Higgs mass, lighter Higgs is preferred!

Mass of Higgs has moved further into directly excluded region

- Analyses utilised 200 pb⁻¹ (Mw) and 350 pb⁻¹ ($\Gamma_{\rm W}$), both CDF and DØ already have ~2 fb⁻¹ on tape.
- Expect improved mass/width measurements to further test the SM and constrain Higgs mass.